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ABSTRACT: Quasi-linear convective systems (QLCSs) can produce multiple hazards (e.g., straight-line winds, flash flooding,
and mesovortex tornadoes) that pose a significant threat to life and property, and are often difficult to accurately forecast. The
NSSLWarn-on-Forecast System (WoFS) is a convection-allowing ensemble system developed to provide short-term, probabil-
istic forecasting guidance for severe convective events. Examination of WoFS’s capability to predict QLCSs has yet to be sys-
tematically assessed across a large number of cases for 0–6-h forecast times. In this study, the quality of WoFS QLCS forecasts
for 50 QLCS days occurring between 2017 and 2020 is evaluated using object-based verification techniques. First, a storm
mode identification and classification algorithm is tuned to identify high-reflectivity, linear convective structures. The algorithm
is used to identify convective line objects in WoFS forecasts and Multi-Radar Multi-Sensor system (MRMS) gridded observa-
tions. WoFS QLCS objects are matched with MRMS observed objects to generate bulk verification statistics. Results suggest
WoFS’s QLCS forecasts are skillful with the 3- and 6-h forecasts having similar probability of detection and false alarm ratio
values near 0.59 and 0.34, respectively. The WoFS objects are larger, more intense, and less eccentric than those in MRMS. A
novel centerline analysis is performed to evaluate orientation, length, and tortuosity (i.e., curvature) differences, and spatial dis-
placements between observed and predicted convective lines. While no systematic propagation biases are found, WoFS typi-
cally has centerlines that are more tortuous and displaced to the northwest of MRMS centerlines, suggesting WoFS may be
overforecasting the intensity of the QLCS’s rear-inflow jet and northern bookend vortex.

SIGNIFICANCE STATEMENT: Quasi-linear convective systems (QLCSs), also known as squall lines, can be very
destructive to life and property as they produce multiple hazards such as hail, severe straight-line winds, flash flooding,
and tornadoes that typically form quickly and may be difficult to observe on radar. These storms can occur year-round
and have the propensity to develop overnight or into the early morning hours, potentially catching the public off-guard.
An ensemble prediction system called the Warn-on-Forecast System (WoFS), created by the National Severe Storms
Laboratory, has shown promise in accurately forecasting a variety of severe weather events. This research evaluates the
quality of the WoFS’s QLCS forecasts. Results show WoFS can accurately predict these systems for forecast times out
to 6 h.
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1. Introduction

Quasi-linear convective systems (QLCSs) are linearly ori-
ented mesoscale convective systems (MCSs) that typically
have a longer length than width. These systems are commonly
referred to as squall lines, or bow echoes when they contain
one or more bowing segments along the leading convective
line. QLCSs are capable of producing a variety of dangerous
and destructive hazards such as straight-line winds, hail, flash
flooding, and tornadoes produced from shallow, embedded
mesovortices (Atkins et al. 2004; Trapp et al. 2005; Smith et al.
2012; Thompson et al. 2012; Brotzge et al. 2013; Ashley et al.
2019). In fact, a QLCS climatology study analyzing composite
reflectivity data, spanning from 1996 to 2017 in the continental
United States, found QLCSs account for around 21% and
28% of tornado and severe wind reports, respectively (Ashley

et al. 2019). These systems can form year-round, including
during the cold season (October–February; Trapp et al. 2005;
Smith et al. 2012; Ashley et al. 2019), when most people may
not expect severe weather to occur. QLCSs are also prone to
forming during the night or in the early morning hours, poten-
tially catching the sleeping public off-guard (Trapp et al. 2005;
Ashley et al. 2019). These factors compound to make the pop-
ulation particularly vulnerable to QLCS hazards. Addition-
ally, QLCS hazards (especially severe wind and tornadoes)
tend to be more difficult to warn and have shorter warning
lead times, which presents substantial forecasting and opera-
tional challenges (Brotzge et al. 2013).

The National Oceanic and Atmospheric Administration’s
(NOAA) National Severe Storms Laboratory (NSSL) is actively
developing a quasi-operational, rapidly updating, convection-
allowing ensemble data assimilation and prediction system as
part of the Warn-on-Forecast project (WoF; Stensrud et al. 2009,
2013). This prediction system, known as the Warn-on-Forecast
System (WoFS), was created to provide probabilistic numericalCorresponding author: Kelsey C. Britt, kelsbritt@ou.edu
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weather prediction between the space and time scales of typical
convective watches and warnings. WoFS has demonstrated an
ability to provide skillful forecasts for a variety of hazardous
weather events such as tornadic thunderstorms (Yussouf et al.
2013; Wheatley et al. 2015; Yussouf et al. 2015; Jones et al. 2016;
Skinner et al. 2018; Flora et al. 2019; Britt et al. 2020), flash flood-
ing events (Yussouf et al. 2016; Lawson et al. 2018; Yussouf and
Knopfmeier 2019; Yussouf et al. 2020b), and tropical cyclones
(Jones et al. 2019; Yussouf et al. 2020a). The capability of WoFS to
accurately forecast QLCSs, however, has not been systematically an-
alyzed. PastWoFS studies may include aQLCS event as one of their
case studies (e.g., Wheatley et al. 2015; Kerr and Alsheimer 2022;
Wang et al. 2022), but none have assessed WoFS’s QLCS forecast
performance by analyzing a large number of events. Therefore, the
purpose of this study is to evaluate WoFS’s capability to predict
QLCS spatial extent, timing, and location at 0–6-h lead times.

To assess WoFS’s skill in the prediction of QLCS events,
object-based verification techniques are applied (e.g., Davis et al.
2006a,b). These verification methods have been used extensively
within the WoFS framework (e.g., Skinner et al. 2018; Flora et al.
2019; Britt et al. 2020; Potvin et al. 2020; Laser et al. 2022; Miller
et al. 2022; Guerra et al. 2022) to match thunderstorm objects
forecasted by WoFS with observed objects in the gridded NEX-
RAD data from the Multi-Radar Multi-Sensor system (MRMS;
Smith et al. 2016). In the current study, QLCS objects are identi-
fied using an object identification and classification algorithm
(Potvin et al. 2022) and then are matched and verified using
methods adapted from Skinner et al. (2018). Object-based verifi-
cation metrics are then used to evaluate the overall performance
of WoFS’s 6-h QLCS forecasts. Furthermore, a novel centerline
analysis is used to explore more specific errors between fore-
casted and observed QLCS objects (i.e., orientation, spatial dis-
placement, and tortuosity/curvature), that are not considered in
simple object matching. Those errors can then be connected to
physical processes occurring within the QLCSs, which may help
determine how WoFS may be representing these processes.
Moreover, the centerline analysis may provide insight into the
advantages and disadvantages of using WoFS to forecast QLCSs,
and determine components of the forecast system that may need
to be changed or improved in the future.

2. Data and methods

a. Forecast and verification datasets

TheWoFS is a 36-member ensemble data assimilation and pre-
diction system. WoFS was initialized using the High-Resolution
Rapid Refresh Ensemble (HRRRE; Dowell et al. 2016) from
2017 to 2019, then the High-Resolution Rapid Refresh Data
Assimilation System (HRRRDAS; Dowell et al. 2022) for
2020–present. The HRRRE/HRRRDAS provides initial and
lateral boundary conditions for the 750 km 3 750 km (2017/18)
or the 900 km 3 900 km (2019/20) WoFS domain. WoFS uses
3-km horizontal grid spacing and 51 vertical levels that extend
from the surface to 10 hPa. WoFS is cycled every 15 min and
uses an ensemble Kalman filter (EnKF; Houtekamer and Zhang
2016) to assimilate MRMS reflectivity (Smith et al. 2016),
Weather Surveillance Radar-1988 Doppler (WSR-88D) radial

velocity, Geostationary Operational Environmental Satellite
(GOES) cloud water path retrievals (Jones et al. 2015, 2016,
2020), GOES clear sky radiances (Jones et al. 2018), and any
available conventional observations from a variety of observing
systems (e.g., Automated Surface Observing Systems, mesonets,
aircraft, radiosondes). A Data Assimilation Research Testbed
(DART)-based (Anderson and Collins 2007; Anderson et al.
2009) EnKF was used for all 2017/18 cases, and the Community
Gridpoint Statistical Interpolation (GSI; Kleist et al. 2009; Hu
et al. 2016) EnKF for the 2019/20 cases. Each WoFS member
utilizes the NSSL two-moment microphysics scheme (Mansell
et al. 2010) and the Rapid Update Cycle (RUC) land surface
model (Smirnova et al. 2016). However, the planetary boundary
layer (PBL) and radiation physics parameterizations are varied
among forecast members to account for uncertainties in the
model physics [see Table 1 in Skinner et al. (2018)]. Following
analysis, WoFS issues 18-member forecasts at hourly intervals
with durations up to 6 h.

The WoFS forecast dataset for this study consists of 50 days
with QLCS events from 2017 to 2020 (Table 1). Since WoFS
undergoes yearly testing and evaluation during the Hazardous
Weather Testbed Spring Forecasting Experiment (e.g., Clark
et al. 2020, 2021), most of the archived events are from the spring
or early summer months. In this study, the majority of events
occur in May and are concentrated in the southern Great Plains
(Fig. 1). This study analyzes hourly 18-member forecasts issued
between 2000 and 0200 UTC for each of the 50 days. The 151-,
60-, 120-, 180-, 240-, 300-, and 360-min forecast times of each
hourly initialized forecast are analyzed to examine forecast
progression and fluctuations in verification statistics. Only the
15–180-min forecast times will be analyzed for the 2017/18 events,
as WoFS forecast duration was only 3 h during those years.

TABLE 1. List of 2017–20 QLCS events. An asterisk indicates
inclusion in the subset of events used for initial tuning of the
QLCS identification algorithm (see the appendix).

2017 2018 2019 2020

4 May* 1 May* 30 Apr* 5 May
11 May* 2 May* 1 May 7 May
17 May 3 May 2 May 8 May
18 May* 7 May 3 May 13 May
19 May 9 May 6 May 15 May
24 May 12 May 7 May 21 May
27 May 14 May 8 May 22 May

15 May 16 May 29 May
19 May 17 May 19 Jun
21 May 18 May 21 Jun
28 May 20 May 26 Jun
29 May* 21 May 17 Jul
1 Jun 24 May 14 Aug

28 May* 25 Aug
29 May*
19 Jul

1 WoFS analyses are not used because they are generated
through assimilation of MRMS reflectivity observations and
closely resemble the observations (see the appendix).
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Gridded composite reflectivity observations from the MRMS
system serve as the verification dataset for the WoFS QLCS
forecasts. MRMS provides real-time composite reflectivity from
WSR-88D observations sampled across the continental United
States. The MRMS data are interpolated to the 3-kmWoFS grid
using a Cressman filter with a 3-km radius of influence (Skinner
et al. 2018).

b. QLCS object identification and classification

To identify QLCS objects across all events, a unique storm
mode identification and classification algorithm is used (Potvin
et al. 2022). The automated algorithm uses composite reflectivity
to identify and classify storms according to a 7-class scheme
(Potvin et al. 2022), but for this study only the QLCS objects are
of interest. The algorithm was adapted in two stages of tuning to
improve its skill in identifying intense linear structures character-
istic of QLCS convective lines. The complete tuning process and
how the defining thresholds for QLCS objects (Table 2) were
created is outlined in the appendix.

The algorithm’s identification process is two-pass. The first
pass identifies regions of intense composite reflectivity using
a double threshold method (Table 2). Initial storm objects
in MRMS are identified as regions where composite and
maximum reflectivity exceeds 40 and 45 dBZ, respectively,
whereas the thresholds for composite and maximum reflectiv-
ity for WoFS storm objects must exceed 45 and 50 dBZ,

respectively. Storm objects that have areas greater than 6 grid
cells and exist within 12 km of each other will be merged into
a single object. If the final object meets the criteria in Table 2
for minimum area, length, and eccentricity then it will be cate-
gorized as a QLCS. A second pass is applied to merge QLCS
objects that are likely part of the same system. These QLCS
objects have to be within 40 km of each other and have similar
orientations (within 308).

c. QLCS object matching and verification

The forecasted and observed QLCS objects, and their diag-
nostic properties (e.g., intensity, area, eccentricity, etc.), are
extracted using the Scikit-image Python library and the re-
gionprops function (van der Walt et al. 2014). The forecasted
and observed objects are then matched according to a total in-
terest score (TIS; Davis et al. 2006a,b), adapted from Skinner
et al. (2018). The TIS is given as

TIS 5
(mdmax 2 md)

mdmax
, (1)

where md is the minimum distance between the object pair
and mdmax is the maximum threshold for object matching,
which is set to 40 km [as in Skinner et al. (2018)]. The TIS is
calculated for each of the object pairs and must be greater
than 0.2 to be considered a possible match (Skinner et al.

TABLE 2. Tuned parameter thresholds for the storm ID and classification algorithm.

Parameter Threshold value

Minimum reflectivity 40 dBZ (MRMS); 45 dBZ (WoFS)
Maximum reflectivity 45 dBZ (MRMS); 50 dBZ (WoFS)
Minimum area 54 km2 (6 grid cells)
Merge distance 12 km (4 grid cells)
Length and eccentricity If length .100 km, then eccentricity . 0.85; if length . 150 km, then eccentricity . 0.74

FIG. 1. Geographic and monthly distribution of the selected QLCS events. The symbols and
colors represent the year and month of QLCS occurrence, respectively. Each point represents
the center of the WoFS domain for each event.
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2018; Guerra et al. 2022). Unlike Skinner et al. (2018), the
centroid distance is not included in the TIS calculation as the
QLCS objects are often large and irregular in size and shape,
which causes large variation in centroid placement. One limi-
tation of solely using a minimum distance threshold for
matching is that sometimes MRMS objects can be matched to
multiple WoFS objects, and vice versa. To mitigate this occur-
rence, only the object pair with the highest TIS is retained,
and that object pair is known as the best match. If there is a
tie between pairs with the highest TIS, then the object pair
with the smallest area difference is retained. The tie-breaker
ensures the best possible match is made between two objects
of similar size.

Object matching allows for the classification of object pairs
according to 2 3 2 contingency table metrics (Brooks 2004).
In this study, hits are defined as the best match (if one exists)
for each MRMS object, unmatched MRMS objects are classi-
fied as misses, and false alarms are unmatched WoFS objects
(Fig. 2). Extra matches may also occur, which is when a
MRMS or WoFS object is matched to multiple WoFS or
MRMS objects, respectively (Fig. 2). In this case, only the best
match is retained and considered a hit, whereas the extra
matches are ignored so as to not unfairly reward or punish
WoFS (Fig. 2). Correct negatives are not produced through
object matching, so verification statistics are limited to those
that only use hits, misses, and false alarms in their calculations.
Therefore, the verification metrics (Brooks 2004) used herein are
probability of detection [POD; Eq. (2)], false alarm ratio [FAR;
Eq. (3)], critical success index [CSI; Eq. (4)], and frequency bias
[Eq. (5)]. They are given by the following equations:

POD 5
H

H 1 M
, (2)

FAR 5
F

H 1 F
, (3)

CSI 5
H

H 1 M 1 F
, (4)

bias 5
H 1 F
H 1 M

, (5)

where H, M, and F represent hits, misses, and false alarms, re-
spectively. Additionally, matching the MRMS and WoFS QLCS
objects enables the comparisons of their diagnostic properties,
such as the area, eccentricity, aspect ratio, and the maximum in-
tensity. One limitation of this study is that QLCS cases were se-
lected based on the presence of a QLCS inMRMS. This selection
process neglects cases where WoFS members predict a QLCS but
one is not observed; therefore, the FAR values presented herein
are best thought of as a lower bound of the true FAR.

d. QLCS centerlines

A centerline analysis is a technique that enables the examina-
tion of specific spatial errors between predicted and observed
QLCS objects that are not available through comparison of
whole QLCS objects. A centerline is defined as the line that runs

lengthwise down the center of the QLCS object and is a proxy
for the QLCS’s leading convective line. Centerlines are gener-
ated for each of the MRMS-WoFS best-matched pairs using a
customized python algorithm (Ungar 2022). First, the object is
smoothed using a Gaussian filter with a radius of 5 grid points
and converted to a binary object (Fig. 3b). The binary object
is created by giving all points contained within the object the
label 1, while all points outside the object are assigned the
label 0. The binary object is then converted to a polygon using
the Shapely python package (Gillies et al. 2023; Fig. 3c). The ob-
ject polygon is loaded into the centerline algorithm, which
identifies the polygon’s perimeter and uses a Voronoi diagram
technique (Aurenhammer 1991) to extract the polygon’s skele-
ton (Fig. 3c). The object’s centerline is isolated from the larger
skeleton by trimming the shorter branches to find the longest
shortest path between any pair of perimeter nodes (Fig. 3d). In
other words, the shortest paths between all perimeter nodes are
calculated and the longest of those paths is then smoothed to be-
come the object’s centerline (Fig. 4). A limitation of the center-
line analysis function is that it typically has higher variability in
line placement at either end of the object. To lessen this variabil-
ity, only the centerline points between the 10th and 90th percen-
tiles2 of its length are analyzed (Fig. 4). However, there remains
some uncertainty at the centerline endpoints that are, unfortu-
nately, collocated with particularly interesting portions of the
QLCS, such as bookend vortices.

Centerline characteristics examined are spatial displacements
and differences in length, orientation, and tortuosity. The orien-
tation of the centerline is defined as the angle between east (08)
and the endpoint line. For example, if the centerline orientation
is 908 then the line would be purely north–south-oriented, with
the maximum allowable angle being 1798. Tortuosity is a dimen-
sionless parameter commonly used in health (Ciurică et al.
2019) and material sciences (Fu et al. 2021) to characterize the
porosity of a substance, such as arteries or nerves. In this study,
tortuosity is used to measure centerline curvature and is calcu-
lated using the following equation:

tortuosity 5
Lc

Le

, (6)

where Lc is the centerline length and Le is the length of the
centerline’s endpoint line (Fig. 4). Thus, tortuosity increases
as the centerline’s curvature increases.

3. Results

a. WoFS overall performance

The overall forecast performance of WoFS is assessed by cal-
culating POD, FAR, CSI, and frequency bias for all QLCS

2 The centerline’s coordinates are ordered so that they start at
the QLCS’s southern tip and end in the north. The percentiles are
calculated over the length of the coordinate array so that there is
one coordinate pair corresponding to every 5th percentile. Percen-
tiles are used to ensure we are sampling similar parts of the center-
line, regardless of its shape or length (e.g., the 50th percentile will
always be at the center of the line).
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FIG. 2. (left) MRMS composite reflectivity and (right) WoFS composite reflectivity forecasts displaying examples of
hits, misses, extra matches, and a false alarm in the object matching process. Best matches in MRMS are considered
hits, unmatched MRMS objects are classified as misses, and false alarms are unmatched WoFS objects. Extra matches
occur when a single MRMS or WoFS object is matched to multiple WoFS or MRMS objects, respectively. Only the
best match is retained and the extra matches are ignored.
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events (Fig. 5). The statistics are calculated over all events
by aggregating the total number of hits, misses, and false
alarms for all composite reflectivity ensemble forecasts ini-
tialized between 2000 and 0200 UTC (i.e., 36 540 total fore-
casts). The total number of QLCS objects identified across
all events in MRMS is 3207, and the total across all events,
initialization times, lead times, and ensemble members in
WoFS is 50 810 (an average of approx. 2823 objects per
member).

WoFS QLCS forecasts have a POD near 0.64 during the
first hour of the forecast period (Fig. 5a). After 60 min, POD

decreases to approximately 0.59 at the end of the 3- and 6-h
forecasts (Fig. 5a). FAR values for the entire 6-h forecast pe-
riod stay below 0.4, with a sharp increase in values evident
within the first 60 min (Fig. 5b). This sharp increase in FAR
also coincides with the increase in POD (Fig. 5a) and fre-
quency bias (Fig. 5c), and may be attributable to WoFS’s con-
vective spinup process. During this spinup process, more
spurious reflectivity echoes are present in the forecast, which
increases POD, FAR, and bias. Skinner et al. (2018) found a
similar trend in frequency bias when examining all WoFS re-
flectivity objects, in which the bias was the highest in the first

FIG. 3. Illustration of the centerline creation process. Starting with (a) the QLCS object of interest, (b) QLCS object
converted to a binary object, (c) binary object converted to a polygon with object skeleton overlaid (black line), and
(d) the resulting centerline (red) from the full skeleton. The centerline is then smoothed to create the final centerline
product as shown in Fig. 4.
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60 min of the forecast. After 60 min, the bias3 begins to de-
crease with time indicating these weak, spurious storms are
short-lived and dissipate by the end of the forecast (Fig. 5c).
CSI for QLCS forecasts is maximized at the beginning of the
forecast with values around 0.52, then subsequently decreases
with time with values near 0.46 and 0.44 at the end of the 3- and
6-h forecast, respectively (Fig. 5d). Examining the individual
members by PBL scheme shows no substantial differences
(Fig. 5), consistent with results from previous research by
Potvin et al. (2020).

Verification statistics were also generated for all Spring
Forecasting Experiment cases that occurred in April and May
from 2017 to 2020 (total of 85 cases; Fig. 6). This dataset con-
tains storms of all types, not just QLCSs. Therefore, compar-
ing the two sets of verification statistics (Figs. 5 and 6) will
highlight differences between forecasts for just QLCSs and

for all storm types.4 POD for all storms is maximized within
the first 30 min of the forecast, but decreases consistently af-
terward (Fig. 6a), whereas QLCS forecasts maintain POD val-
ues around 0.6 for most of the 6-h forecast (Fig. 5a). QLCS
forecasts stay below 0.4 for FAR throughout the 6-h forecast
(Fig. 5b), but FAR for all storms passes 0.4 in the first 15 min
of the forecast and increases to approximately 0.65 at the end
of the period (Fig. 6b). Frequency bias for QLCS forecasts lin-
gers just below 1 for the entire forecast (Fig. 5c) and is mostly
above 1 for forecasts for all storms (Fig. 6c). Finally, CSI for
QLCS forecasts lingers around 0.5 (Fig. 5d), while the CSI for
all storms reaches 0.5 at the beginning of the forecast but de-
creases consistently throughout the rest of the forecast (Fig. 6d).
Therefore, WoFS is exhibiting higher forecast skill for QLCS ob-
jects compared to all storm objects, and that skill is retained

FIG. 4. Example of a centerline overlaid on the WoFS output for the 17 Jul 2020 QLCS during
the 0000 UTC forecast for ensemble member 6 at the end of the 6-h forecast. The centerline
(solid black line) extends from the 10th–90th percentiles of the total QLCS object’s length. The
endpoint line (dotted black line) is the straight path connecting the centerline’s endpoints. The
QLCS object is represented as the outlined area of reflectivities, with the faded area of reflectiv-
ities being the full WoFS output at this time.

3 Frequency bias was also calculated using the total number of
MRMS and WoFS objects, including the objects from the extra
matches. The bias still remained between 0.8 and 0.9 as in Fig. 5c.
This small change in bias when including the extra objects indi-
cates the extra objects are nearly evenly distributed between
WoFS andMRMS.

4 Results from the full set of reflectivity objects do not use an
identical methodology to the one used herein. Object identifica-
tion andmatching follow themethodology outlined inGuerra et al.
(2022), but no object merging is performed (the extra objects are
not included in the calculation of contingency table statistics).
While this is not a direct comparison, it does provide a general
comparison of the accuracy between QLCS and all convective
storm forecasts.
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throughout the 6-h forecast. This finding suggests WoFS
may be better at forecasting QLCSs over other storm modes
because QLCSs can be strongly forced (e.g., by a cold front;
Wheatley and Trapp 2008) and fairly large, which would
make them more easily resolved on the 3-km WoFS grid,
and have a longer intrinsic predictability limit (Weyn and
Durran 2017, 2019).

WoFS forecast performance can also be assessed by aggre-
gating all events on performance diagrams to examine POD
and success ratio (SR) differences between events, and how
performance changes with forecast time. However, instead of
traditional performance diagrams, Figs. 7 and 8 are formatted
like heat maps so one can easily ascertain where the highest
concentration of events exist. Each point on the performance
heat diagrams represents a single event’s ensemble mean POD
and SR for each of the hourly initialized forecasts at that spe-
cific forecast time (Fig. 7). Therefore, each event may have up
to seven points on each diagram in Fig. 7, one for each of the
2000–0200 UTC forecasts. The points are then sorted into
0.1 POD 3 0.1 SR bins. Finally, all points from each panel in
Fig. 7 are aggregated onto a single performance heat diagram
covering the 6-h forecast period (Fig. 8).

The heat diagrams are separated by forecast time to under-
stand how WoFS performance changes with forecast progres-
sion (Fig. 7). Inspection of the performance heat maps by
forecast time reveals three main areas where the majority of
events are concentrated: the top-right corner, the right side
where POD 5 0.5, and the bottom-left corner (Figs. 7 and 8).

The key reason why these locations are favored is because
QLCSs are often sparse (i.e., only one or two objects) within
the WoFS domain for any given forecast. For example, if there
are only 2 observed QLCS objects then WoFS will either cor-
rectly identify all objects, identify one but miss the other, or
miss both objects. This results in the three favored locations
seen on the performance heat diagrams (Figs. 7 and 8). The
top-right corner is where POD and SR equal 1, indicating a per-
fect forecast. Having events clustered in this location suggests
WoFS is able to forecast many QLCS events very well, without
missing any objects. The second location is along the right-side of
the diagram where POD5 0.5 and SR5 0.8–1.0. Having events
in this area means WoFS is predicting half of the objects cor-
rectly, but missing the other half. Finally, the last favored location
is in the bottom-left corner near zero, indicating WoFS missed all
objects in the forecast.

While the favored locations do not change with forecast time,
the percentage of events in those locations does (Fig. 7). In the
top-right corner, the percentage of perfect forecasts decreases
with forecast time, whereas the percentage of missed forecasts
(i.e., those with POD5 0 and SR5 0) increases with time. Note
the decrease in sample size from 180 min (Fig. 7d) to 240 min
(Fig. 7e) because the 2017 and 2018 events have a maximum
forecast period of 3 h.

There are 260 missed (i.e., no hits in WoFS) QLCS events
across all forecasts, accounting for 14% of all events (Fig. 8).
Approximately 50% of these missed forecasts occur during
the 2000–2200 UTC initializations (not shown). Past studies

FIG. 5. Time series of verification statistics for WoFS QLCS forecasts: (a) POD, (b) FAR, (c) frequency bias, and (d) CSI. The ensemble
mean is in black and the individual ensemble members (1–18) are represented by thin orange, green, and blue lines that represent the en-
semble members with YSU, MYJ, and MYNN PBL schemes, respectively. Gray shading denotes the 95% confidence interval using a
bootstrapping technique with replacement (N 5 10 000). The ensemble mean is found by aggregating all hits, misses, and false alarms
over all composite reflectivity forecasts initialized between 2000 and 0200 UTC for all years and ensemble members.
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have found the accuracy of WoFS forecasts is primarily de-
pendent on the maturity of the storm within WoFS’s initial
conditions (Flora et al. 2019; Guerra et al. 2022). The
higher proportion of missed events in early forecast initial-
izations is consistent with the fact that QLCSs often ha-
ven’t matured or even initialized by 2000–2200 UTC, in
which case they are not accurately represented in the
WoFS initial conditions.

The performance diagrams show a consistent low-bias
in WoFS (Figs. 7 and 8) that was also evident in Fig. 5c
where the bias was less than one for the whole 6-h forecast.
There is a high concentration of events that exist below the
bias 5 1 line, meaning WoFS is underforecasting the num-
ber of QLCS objects in the majority of events (Figs. 7 and
8). This low-bias may be attributable to a few factors. Sub-
jective analysis of QLCSs within MRMS and WoFS found
that it is common for MRMS QLCSs to be broken into mul-
tiple objects, whereas the full convective line may be only
one object in WoFS. MRMS also contains more stratiform
region objects that often go unmatched. Both situations gen-
erate more objects in MRMS than WoFS, which would lead
to the overall low bias. The bias may also be manipulated by
changing the thresholds in the object identification algo-
rithm.5 The algorithm for this study was tuned to match sub-
jective interpretation and to optimize performance (see the
appendix).

b. QLCS object characteristics

Comparing WoFS and MRMS QLCS object characteristics
from each best match identified differences in area (Fig. 9a), max-
imum intensity (i.e., reflectivity; Fig. 9b), aspect ratio (Fig. 9c),
and eccentricity (Fig. 9d). All differences are calculated by sub-
tracting the MRMS value from the WoFS value. Therefore, posi-
tive values indicate the WoFS object value is larger than the
MRMS value, and vice versa.

Analysis of object area differences shows WoFS objects are
on average larger than MRMS objects at later forecast times
(Fig. 9a). The positive area bias may be connected to the substan-
tial positive bias observed in object maximum intensity (Fig. 9b),
indicating WoFS objects are more intense than MRMS objects.
Part of this positive intensity bias is attributable to the Cressman
filter that was applied to MRMS reflectivity, which typically re-
duces the maximum intensity by about 5 dBZ. Additionally,
WoFS uses the NSSL two-moment microphysics scheme, which
was found to overpredict reflectivity values (Skinner et al. 2018).
Closer visual examination of the WoFS QLCS events found the
WoFS QLCS objects typically include more of the stratiform re-
gion than do the MRMS objects (Fig. 10). While WoFS QLCS
objects are larger than those in MRMS, the spatial coverage of
the full storm in WoFS is generally much smaller (Fig. 10). The
storms in WoFS also appear to have little to no transition zone
(Biggerstaff and Houze 1993), which is an area of low reflectivity
that exists between the leading convective line and the trailing
stratiform region (Fig. 10). The lack of a transition zone removes
the boundary separating the stratiform precipitation from the
convective line, making it easier for more of the stratiform region

FIG. 6. As in Fig. 5, but for all Spring Forecasting Experiment (SFE) cases in April and May from 2017 to 2020 (85 total events), and
data are output every 5 min. The slight increase in POD, FAR, and bias at the 180-min forecast time occurs because of the shift from
DART to GSI DA software. (Figure courtesy of Patrick Skinner.)

5 Changing the thresholds may change the numerical values, but
the overall trends remain the same.
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FIG. 7. Performance diagrams displayed as heat maps to easily show the locations that contain the high-
est percentage of points. Each point represents the event’s ensemble mean POD and SR for a single fore-
cast at that specific forecast time (up to 7 points total from the 2000–0200 UTC forecasts for each event).
Each panel represents one forecast time: (a) 15, (b) 60, (c) 120, (d) 180, (e) 240, (f) 300, and (g) 360 min.
The black dotted lines and curved lines represent bias and CSI, respectively. The total number of forecasts
(n) used in each panel is shown in the bottom-right corner.
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to be included as part of the convective line object. This pattern
is consistent with more of the stratiform region being identified
with the convective line objects in WoFS and the size difference
betweenWoFS andMRMS objects (Fig. 9a).

Differences in object aspect ratio and eccentricity also sug-
gest WoFS is retaining too much of the stratiform region com-
pared to MRMS (Figs. 9c,d). Aspect ratio differences show a

consistent positive bias across forecast time (Fig. 9c). Recall,
aspect ratio is the ratio of minor axis length to major axis
length. Hence, positive aspect ratio differences indicate
MRMS objects have shorter minor axes compared to WoFS
objects (Fig. 9c). Additionally, if MRMS objects have shorter
minor axes then the objects will also appear slimmer and
more eccentric, which is evident from the negative eccentric-
ity bias (Fig. 9d). Conversely, these biases indicate WoFS
objects have wider minor axes and lower eccentricities
(Figs. 9c,d), which is consistent with the WoFS objects re-
taining more of the stratiform region (Fig. 10).

c. QLCS centerline analysis

Centerline analyses allow for the quantification of specific
errors in QLCS convective line characteristics that are not
available in typical object-based diagnostics. Differences in
centerline tortuosity (Fig. 11a), length (Fig. 11b), and orienta-
tion (Fig. 11c) between best-matched pairs are evaluated to
understand how the simulated WoFS QLCSs differ from
those in MRMS.

The 60–180-min forecasts show a slight negative bias in tortu-
osity indicating MRMS centerlines are typically more curved
within this time period (Fig. 11a). Following the 180-min forecast,
the bias becomes positive meaning the WoFS centerlines have
slightly more curvature than MRMS at longer forecast times
(Fig. 11a). The large separation between the mean and median
tortuosity values (Fig. 11a) may be attributable to the high-end
bow echo events. Since not all QLCSs contain bowing segments,
or even transition to a bow echo, those that do will skew the
mean tortuosity because they have more curvature than standard

FIG. 8. All panels in Fig. 7 aggregated onto one plot for all forecast
times. The total number of forecasts used is given by n.

FIG. 9. Notched boxplots illustrating the differences in object (a) area, (b) maximum intensity, (c) aspect ratio, and
(d) eccentricity between WoFS and MRMS best-matched pairs with increasing forecast time. Differences are calcu-
lated by subtracting the MRMS value from the WoFS value. The dotted red, solid purple, and solid orange lines
represent the zero line, mean, and median, respectively. Whiskers extend to the 10th and 90th percentiles. Notches
represent the 95% confidence interval of the median using a bootstrap method with replacement (N5 10000).
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QLCSs. Centerline length differences show a small negative bias
throughout the entire 6-h forecast, indicating MRMS centerlines
are typically longer than those in WoFS (Fig. 11b). Finally, differ-
ences in orientation angle show a positive bias that increases with
forecast time (Fig. 11c). On average, MRMS centerlines are ori-
ented between 608 and 708 (not shown), while WoFS centerlines
start off oriented between 608 and 808 then rotate cyclonically
with increasing forecast time (not shown). Therefore, WoFS cen-
terlines tend to be oriented in the same direction as MRMS cen-
terlines (southwest–northeast direction) at the beginning of the
forecast, but become more aligned in the south–north direction
at the end of the forecast (see the centerline panels in
Fig. 12; further discussion later).

The cyclonic rotation of WoFS centerlines and the spatial dis-
placement between MRMS and WoFS centerlines is further ex-
plored in Figs. 13 and 14. Spatial displacement calculations
between WoFS and MRMS centerlines are simplified by com-
paring every 5th percentile in the centerlines. The result is one
coordinate pair for WoFS and MRMS corresponding to each
percentile that can then be easily used to find the displace-
ment between lines. Displacement calculations use the
WoFS centerline position as the reference point and sub-
tract the MRMS position. For example, a northern bias indi-
cates WoFS centerlines are located to the north of MRMS
centerlines. Kernel density estimation (KDE) is used to
highlight areas where the majority of the full distribution’s
displacement occurs (Fig. 13).

Separating the displacement by forecast time allows for the ex-
amination of potential biases that may exist at certain times in
the forecast or that grow with time (Fig. 13). During the first 3 h
of the forecast, the displacement is evenly centered around the

origin (Figs. 13a,b). However, the displacement begins to shift to-
ward the northwest following the 3-h forecast (Figs. 13c,d), indi-
cating WoFS centerlines are typically located to the northwest of
MRMS centerlines. The full displacement distribution has the
shape of a rectangle with a major axis oriented from roughly
southwest to northeast (Fig. 13). When the displacement is in
the northeast quadrant then the WoFS centerline is traveling
ahead of MRMS, but if the displacement is located in the
southwest quadrant then the MRMS centerline is leading
WoFS. Therefore, more spread in the northeast and south-
west directions suggests the storm propagation speed is most
likely the main factor contributing to the displacement be-
tween centerlines given that the spread occurs along climato-
logically favorable QLCS propagation vectors. While WoFS
QLCS propagation errors are often large, they are relatively
unbiased overall.

Centerline displacement is dissected further by dividing the
QLCS centerlines into four sections based on percentiles ranges:
the southern end (0th–25th percentiles; Figs. 14a,b), south-central
portion (25th–50th percentiles; Figs. 14c,d), north-central portion
(50th–75th percentiles; Figs. 14e,f), and the northern end (75th–
100th percentiles; Figs. 14g,h).

The displacement in the 15-min forecasts (Figs. 14a,c,e,g) is
similar to Fig. 13a in that it is mostly centered around the origin.
However, at the end of the 360-min forecasts there is an evident
shift in the highest density of displacements away from the origin
by approximately 25 km (Figs. 14b,d,f,h). The southernmost end
has a mostly southern displacement bias, indicating the southern
portions of WoFS QLCSs tend to be displaced to the north of
those in MRMS (Fig. 14b). The south- and north-central por-
tions of the QLCS show similar displacement biases to the north

FIG. 10. Illustration of object characteristic differences in (left) MRMS, and in the 0000 UTC 120-min WoFS forecasts for ensemble
member (center) 12 and (right) 16. Object properties (maximum reflectivity, area, aspect ratio, and eccentricity) are annotated in the top-
left corner of each panel. Black arrows denote the areas of stratiform being included as part of the convective line object. WoFS objects
tend to be more intense and include more of the stratiform region, which leads to the objects having higher aspect ratios and lower eccen-
tricities compared to MRMS objects.
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(Figs. 14d,f), with the south-central portion (Fig. 14d) having a
larger western component to its bias than seen in the north-
central portion (Fig. 14f). Last, the northern ends of WoFS
QLCSs are located to the northwest of that observed with
MRMS (Fig. 14h). The shift in WoFS centerlines to the north-
west with increasing forecast time corroborates the cyclonic
change in orientation angle that was observed in WoFS center-
line properties (Fig. 11c).

4. Discussion

A QLCS event that occurred on 17 July 2020 is chosen as a
representative example to synthesize and discuss the results
presented within this study (Fig. 12). This QLCS developed in
North Dakota and progressed southeast into Minnesota and
parts of South Dakota. This convective system was associated
with over 100 wind, 29 hail, and 7 tornado reports.

This QLCS was predicted accurately by WoFS, with a total
POD, FAR, CSI, and frequency bias of 0.94, 0.05, 0.90, and
0.99, respectively. However, there remain many differences
between the simulated WoFS QLCS and the one present in
MRMS (Fig. 12). First, the maximum composite reflectivities
for the WoFS QLCS objects are about 10–20 dBZ higher than
those in MRMS (Fig. 12), which is consistent with the large pos-
itive bias in maximum reflectivity between WoFS and MRMS
objects for all events (Fig. 9b). Additionally, the WoFS QLCS
object is larger in size, which corroborates the positive area bias
between WoFS and MRMS QLCSs (Fig. 9a).

One of the largest differences between the simulated QLCS in
WoFS compared to MRMS is WoFS predicts a more intense
northern bookend vortex6 (Fig. 12). Bookend vortices are a pair
of counterrotating vortices that typically form in the midlevels
(3–7 km) on either end of the bow echo (Weisman 1993;
Weisman and Davis 1998; Atkins et al. 2004; Meng et al.
2012). The northern, cyclonic bookend vortex is usually fa-
vored through the convergence of planetary vorticity and will
grow stronger than the southern, anticyclonic vortex (Wheatley
and Trapp 2008; Atkins and Laurent 2009). Previous work
(Weisman 1992, 1993; Grim et al. 2009) has shown that the
combined circulation between the bookend vortices can con-
tribute to the development and intensification of the rear inflow
jet (RIJ; Smull and Houze 1987). Therefore, WoFS’s intense
northern bookend vortex may be indicative of a strong RIJ that
is causing convective lines in WoFS QLCSs to bow out more
than those in MRMS QLCSs (Fig. 12). These bowing segments
may not be system-wide, but localized near the northern book-
end vortex. Further evidence of this overprediction occurring in
WoFS can be found in Fig. 15 where there is an intense north-
ern bookend vortex and RIJ present in the 180-min forecast,
but is absent in the analysis.

The overprediction of the northern bookend vortex and RIJ
intensity in WoFS is also consistent with the results of the center-
line analysis. Differences in centerline properties found WoFS
centerlines tend to be more tortuous (Fig. 11a) and their orienta-
tions turn cyclonically with increasing forecast times (Fig. 11c).
An intense RIJ may cause the WoFS centerlines to bow out
more, thus increasing the line tortuosity with time (Fig. 12). Simi-
larly, a stronger northern bookend vortex is consistent with the
cyclonic rotation of the QLCS’s orientation, and why WoFS
QLCSs tend to be displaced to the northwest of MRMS QLCSs
(Figs. 13 and 14). This cyclonic rotation in orientation is evident
in the last centerline panel in Fig. 12.

5. Summary and conclusions

WoFS has been shown to accurately forecast a variety of se-
vere convective events. However, evaluating WoFS’s capabil-
ity to accurately forecast QLCSs using a large number of
events has yet to be assessed. Therefore, this study examines
50 QLCS days between 2017 and 2020 to assess WoFS’s capa-
bility to predict QLCS spatial extent, timing, and propagation.

FIG. 11. As in Fig. 9, but showing the differences in (a) tortuos-
ity, (b) length, and (c) orientation between the WoFS and MRMS
best-matched centerline pairs. Differences are calculated by sub-
tracting the MRMS value from the WoFS value.

6 Subjective analysis found this overprediction occurs at least
once in 40 out of the 50 QLCS events.
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The WoFS QLCS forecast performance is evaluated using
object-based verification techniques and a novel centerline
analysis used to highlight potential biases in spatial displace-
ment, tortuosity, length, and orientation that may exist when
comparing the QLCSs fromWoFS and MRMS.

Results show WoFS has skill in forecasting QLCSs out to
6 h of forecast time with POD, FAR, and CSI values of the
3-h forecasts (0.57, 0.35, and 0.44) being similar to those at
the end of the 6-h forecasts (0.55, 0.39, and 0.42; Fig. 5). On
the other hand, verification statistics for all storm types have
lower POD and CSI values, and much higher FAR values
(Figs. 6a,b,d), suggesting WoFS is able to more accurately
predict QLCSs than other storm modes. This is expected as
QLCSs are larger and longer-lived systems and, therefore,

should have longer intrinsic predictability limits than cellular
convection (Weyn and Durran 2017, 2019).

We found that WoFS QLCS objects are typically larger,
more intense, and less eccentric than MRMS QLCS objects,
especially at longer forecast times (Fig. 9). The larger size of
WoFS objects is partly attributable to them including more of
the QLCS stratiform region, which in turn may be due to
them having little to no transition zone that would provide a
boundary between the leading convective line and the trailing
stratiform region (Figs. 10 and 12). Additionally, centerline
property differences found WoFS QLCSs are more tortuous
and rotate cyclonically in orientation with increasing forecast
time (Fig. 11). These results are consistent with WoFS over-
forecasting the intensity of the QLCS’s northern bookend

FIG. 12. (left) MRMS composite reflectivity, (center) WoFS composite reflectivity, and (right) the object centerlines from the 17 Jul
2020 QLCS event. The time that each panel is valid for is given in the top left of each panel. The WoFS 60-, 180-, and 360-min forecasts
are from the 0000 UTC initialization for ensemble member 6. MRMS and WoFS centerlines are red and black, respectively, with their as-
sociated tortuosity, length, and orientation properties annotated in their respective color. Note: There are two QLCS objects present in
MRMS at 0300 UTC, but the rightmost object is the best match and, therefore, used for comparison to the WoFS object.
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vortex and RIJ, which is evident in a representative case study
from 17 July 2020 (Figs. 12 and 15).

This study focused on the systematic prediction of QLCSs.
Yet to be examined is WoFS’s ensemble skill in providing un-
certainty information for the prediction of storm characteris-
tics. Additionally, the veracity of the hazards associated with
these systems should also be pursued. The overprediction of re-
flectivity and the northern bookend vortex may affect the pre-
cipitation and wind forecasts. Moreover, the change in the
storm’s orientation with respect to the shear field could have
implications for mesovortexgenesis and tornado potential
(Rotunno et al. 1988; Schaumann and Przybylinksi 2012; Gibbs
2021; Galarneau et al. 2023). Therefore, the quality of the
WoFS’s prediction of extreme rainfall, straight-line wind gusts,
and mesovortex production should be explored. Subsequently,
future work will need to be done to understand the reason for
WoFS’s overprediction of the intensity of the northern bookend
vortex and the RIJ, as this misrepresentation may also affect

the quality of the forecasted hazards. One method for diagnos-
ing this overprediction is by analyzing potential vorticity anom-
alies in forecasted and observed QLCSs (Galarneau et al.
2023). Other work may include analyzing and comparing the
surrounding environments around forecasted and observed
QLCSs to understand how differences may impact the system’s
physical structure and internal dynamics. This study was unable
to examine cold pool structure and depth given our dataset, but
this would be worth pursuing in the future. This examination
should also include in-depth case studies using radar and spe-
cialized observations from field experiments (e.g., TORUS,
Houston et al. 2022; PERiLS, Kosiba et al. 2022) that may also
aid in determining the overprediction of the bookend vortex
and RIJ. Finally, one could also examine seasonal and geo-
graphic variations in QLCS environments by collecting events
from different seasons and geographic areas to understand how
those conditions influence the strength, structure, and propaga-
tion of QLCSs.

FIG. 13. North–south (N–S) and east–west (E–W) displacement between every 5th percentile along the MRMS and
WoFS centerlines for the (a) 15-, (b) 120-, (c) 240-, and (d) 360-min forecasts. Blue contours represent the KDE contours for
the 90th, 95th, 97.5th, 99th, and 99.9th percentiles.Displacement is calculated by subtracting theMRMSposition fromWoFS.
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FIG. 14. As in Fig. 13, but the QLCSs are divided into four portions: (a),(b) the
southern end (0th–25th percentiles); (c),(d) south-central section (25th–50th percen-
tiles); (e),(f) north-central section (50th–75th percentiles); and (g),(h) northern end
(75th–100th percentiles) for the (left) 15- and (right) 360-min forecasts.
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APPENDIX

Tuning the Storm Identification and
Classification Algorithm

An early version of the storm mode identification and
classification algorithm from Potvin et al. (2022) underwent
two tuning sessions (hereafter referred to as T1 and T2) to
increase the algorithm’s efficiency in identifying intense, lin-
ear QLCS convective line objects in WoFS and MRMS. T1

is broken into three stages (T1a, T1b, and T1c) and uses
subjective methods to verify how well the algorithm is iden-
tifying QLCS objects. The purpose of T1 was to provide a
starting point for finding the best threshold values that cor-
rectly identify and classify WoFS and MRMS objects as
QLCSs, which would then be applied during T2 for the en-
tire 2017–20 dataset (see Table 1 for the full list of case
days). T2 uses object matching and verification techniques
to provide an objective verification for the algorithm.

a. T1: Subjective tuning

T1 consisted of subjectively analyzing and verifying a subset
of nine QLCS case days. Three cases from each year from
2017 to 2019 were randomly chosen (see the cases with an as-
terisk in Table 1) to examine the impacts of changing specific
algorithm parameters on the identification of QLCS objects.
At this time, the 2020 cases were unavailable, but because the
WoFS configuration was the same as that used in 2019 those
tuned parameters should still hold for the 2020 days. During
the initial tuning phase, only the WoFS analyses were consid-
ered (forecasts are considered later).

T1 began by identifying QLCS objects in WoFS and
MRMS using the algorithm’s default thresholds (Table A1).
The resulting objects were then examined to gauge how well
the algorithm was identifying all possible QLCS objects in
either the WoFS or MRMS output. The objects were catego-
rized as hits, misses, or false alarms relative to subjective iden-
tification by the first author so verification statistics could be
calculated to quantify the skill of the algorithm’s QLCS iden-
tification. In this case, a hit was defined as an object identifica-
tion that matched the subjective analysis, a miss was an object
identified subjectively but not by the algorithm, and a false
alarm was an object identified by the algorithm but not sub-
jectively. Misses typically occurred when the object’s reflectiv-
ity was just outside the set threshold, was too small to meet
the minimum area threshold, or had a lower eccentricity.
False alarms tended to be QLCS stratiform regions or a

FIG. 15. Composite reflectivity, 1-km wind barbs (kt; 1 kt ’ 0.51 m s21), and 1-km vorticity for the 17 Jul 2020
QLCS event. (left) The 0300 UTC analysis for ensemble member 6 is compared to (right) the 180-min forecast for
member 6 initialized at 0000 UTC. The WoFS forecast shows an intense northern bookend vortex and rear inflow jet
located within the red box that is not present in the analysis.
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cluster of cells that were merged together to have the appear-
ance of a QLCS, but were of a different storm mode type
(e.g., a line of discrete supercells). The verification statistics
for WoFS and MRMS using the default algorithm parameters
are shown in Table A2.

The default thresholds still missed many QLCS objects in
WoFS and MRMS, evident from the high number of misses
in Table A2. To mitigate some of the problems that occurred
while using the default parameters, T1 began by taking a close
look at all the identified and unidentified QLCS objects to as-
sess what parameters needed to be changed. This first stage of
T1 is referred to as T1a. First, the default reflectivity threshold
for MRMS was too low causing the algorithm to classify parts
of the stratiform region of the QLCS. That threshold was
then increased, as the main goal was to capture the QLCS’s
convective line. The reflectivity thresholds used for WoFS were
too strict, which inflated the number of misses, so those were
lowered. Last, the eccentricity and length thresholds were too
high and had to be lowered as they were causing the algorithm
to miss pieces of the QLCS’s convective line. The final tuned
parameters for T1a are given in Table A1 and their verification
scores in Table A2.

During T1b, or the second stage of T1, the parameters
were tuned separately to find the best value that maximized
the POD and minimized the FAR scores. The main change
between T1a and T1b was in the object length and eccen-
tricity thresholds (Table A1). Originally, the default algo-
rithm contained two threshold statements for length and
eccentricity. However, only one statement was used in the
default and T1a because the other statement was errone-
ously omitted (Table A1). This mistake was found during
T1b resulting in the second statement being added back in

(Table A1). Both length and eccentricity statements were
tuned to maximize the amount of QLCS objects being iden-
tified but also minimizing the amount of more circular ob-
jects (e.g., a supercell) that may be erroneously identified
(Table A1).

The final stage of T1 (referred to as T1c) addressed an is-
sue where identified QLCS objects included too many smaller
reflectivity objects as part of the larger object. To mitigate
this, different minimum object area thresholds were tested
and the resulting minimum area threshold was changed from
15 to 25 grid cells (Table A1). Comparing the verification sta-
tistics between T1b and T1c shows a slight decrease in POD
and CSI in both WoFS and MRMS, and a small increase in
FAR for WoFS. Since the values did not change drastically
with the switch in minimum area thresholds, being able to
accurately identify the area/extent of QLCS objects without
the smaller cells attached to them took precedence. There-
fore, the T1c thresholds were used as the final parameter
thresholds.

b. T2: Objective tuning

The majority of the algorithm was tuned during T1, where
the parameter thresholds were finalized subjectively using a sub-
set of QLCS cases to expedite the tuning process by not having
to run the algorithm over all cases. Instead, the full dataset of
cases were only run through the identification algorithm during
the objective tuning session (T2) using the finalized thresholds
from T1c (Table A1). Once the objects were identified in
WoFS and MRMS, they were then matched using a total inter-
est score method (Skinner et al. 2018) so that the verification
statistics could be calculated using an objective framework.
However, once all the cases were run through the algorithm

TABLE A2. Verification statistics for the subjective tuning sessions.

Name No. of objects Hits Misses False alarms POD (%) FAR (%) CSI (%)

Default WoFS 62 62 124 0 33.3 0 33.3
WoFS T1a 294 232 5 62 97.9 21.1 77.6
WoFS T1b 371 364 7 7 98.1 1.9 96.3
WoFS T1c 267 256 14 11 95.9 3.3 91.1
Default MRMS 130 111 83 19 57.2 14.6 52.1
MRMS T1a 337 247 19 90 92.9 26.7 69.4
MRMS T1b 357 345 6 12 98.3 3.4 95.0
MRMS T1c 249 245 11 4 95.7 1.6 94.2

TABLE A1. Algorithm parameter thresholds for all tuning sessions.

Parameter Default T1a T1b T1c T2 final

WoFS minimum reflectivity 43 39 40 40 45
MRMS minimum reflectivity 36.73 38 40 40 40
WoFS maximum reflectivity 44.93 41 45 45 50
MRMS maximum reflectivity 40.73 40 45 45 45
Minimum area 135 km2 135 km2 135 km2 225 km2 54 km2

Merge distance 9 km 12 km 12 km 12 km 12 km
Length (L) and eccentricity (E) L . 150 km,

E . 0.97
L . 126 km,
E . 0.74

L . 100 km,
E . 0.85;

L . 100 km,
E . 0.85;

L . 100 km,
E . 0.85;

L . 150 km,
E . 0.74

L . 150 km,
E . 0.74

L . 150 km,
E . 0.74
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some new issues arose. One such problem was a time disconti-
nuity where the algorithm would correctly identify a QLCS ob-
ject at one time step but not at the subsequent time step, even
though the QLCS object was still subjectively present in the
forecast.

In an attempt to fix the time discontinuity problem, it was
decided to add Gaussian smoothing to the QLCS objects. The
smoothing was found to improve the identification of QLCS
objects by making the objects more continuous and mitigating
gaps between them. Additionally, the time discontinuities more
often occurred with smaller QLCS objects. If the area thresh-
old was lowered for unsmoothed objects, the issue from T1b
where too many smaller objects were erroneously being in-
cluded as part of the QLCS’s convective line would return.
However, by adding smoothing and rearranging the steps in
the algorithm’s quality control (QC) process, the area
threshold was able to be lowered without adding in the
smaller objects. Essentially, the QC was rearranged so that
it would check the object area before merging all nearby
objects together. Thus, small objects that did not meet the
minimum area threshold were thrown out and excluded
from the merging process.

Subjective and objective sensitivity tests were conducted to
find the best radius of influence for the Gaussian smoothing
and a new minimum area threshold. Using only the 9 May 2018
case, various smoothing radii and minimum area thresholds
were subjectively analyzed. Smoothing radii of 3, 4, and 5 grid
cells, and a minimum area threshold of 4, 5, 6, 7, and 8 grid
cells were tested. The goal was to find the optimal radius and
area that would result in objects that were more continuous, re-
duced any time discontinuities, and identified the majority of
the object without the inclusion of smaller spurious cells. It was
discovered that using a smoothing radius of 4 grid cells and a
minimum area of 6 grid cells (54 km2) accomplished this goal.

The optimal values for Gaussian smoothing and minimum
area were then used in the objective sensitivity tests to under-
stand how adding/changing each component would affect the
verification statistics. These sensitivity experiments are outlined
in Table A3. The experiments were conducted over a subset of
four QLCS case days, which included the best case (17 July
2020), worst case (9 May 2018), and two randomly chosen days
from the remaining years (18 May 2017 and 1 May 2019).
Each hourly forecast from 2000 to 0200 UTC at the 0- (analy-
sis), 30-, and 60-min lead times were examined. The resulting
POD, FAR, and CSI values for the sensitivity experiments
were evaluated (not shown). In all cases, the Smooth_Area6
experiment performed the best, maximizing the POD and CSI
values but also minimizing the FAR. Therefore, the neighbor-
hood was applied to all cases and the minimum area threshold
was changed to 6 grid cells (54 km2).

The final change made during the T2 stage was the decision
to not include the WoFS analyses in the verification process.
Fortunately, only the WoFS reflectivity thresholds would need
to be changed when no longer considering the analyses. Since
WoFS analyses are generated through assimilation of MRMS
reflectivity observations, analysis reflectivity values will more
closely resemble observations. Following the analysis, higher
composite reflectivity values will be reestablished by WoFS’s
microphysics scheme (the NSSL two-moment scheme). There-
fore, the baseline and maximum WoFS reflectivity thresholds
were changed to 45 and 50 dBZ, respectively, to account for
the increase in reflectivity values from the analysis to any fore-
cast time. The final tuned parameters can be seen for T2 in
Table A1 and their resulting verification statistics are evaluated
throughout section 3a.

REFERENCES

Anderson, J. L., and N. Collins, 2007: Scalable implementations of
ensemble filter algorithms for data assimilation. J. Atmos.
Oceanic Technol., 24, 1452–1463, https://doi.org/10.1175/
JTECH2049.1.

}}, T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A.
Avellano, 2009: The Data Assimilation Research Testbed: A
community facility. Bull. Amer. Meteor. Soc., 90, 1283–1296,
https://doi.org/10.1175/2009BAMS2618.1.

Ashley, W. S., A. M. Haberlie, and J. Strohm, 2019: A climatology
of quasi-linear convective systems and their hazards in the
United States. Wea. Forecasting, 34, 1605–1631, https://doi.
org/10.1175/WAF-D-19-0014.1.

Atkins, N. T., and M. S. Laurent, 2009: Bow echo mesovortices.
Part II: Their genesis. Mon. Wea. Rev., 137, 1514–1532,
https://doi.org/10.1175/2008MWR2650.1.

}}, J. M. Arnott, R. W. Przybylinski, R. A. Wolf, and B. D.
Ketcham, 2004: Vortex structure and evolution within bow
echoes. Part I: Single-Doppler and damage analysis of the 29
June 1998 derecho. Mon. Wea. Rev., 132, 2224–2242, https://doi.
org/10.1175/1520-0493(2004)132,2224:VSAEWB.2.0.CO;2.

Aurenhammer, F., 1991: Voronoi diagrams}A survey of a funda-
mental geometric data structure. ACM Comput. Surv., 23,
345–405, https://doi.org/10.1145/116873.116880.

Biggerstaff, M. I., and R. A. Houze Jr., 1993: Kinematics and mi-
crophysics of the transition zone of the 10–11 June 1985
squall line. J. Atmos. Sci., 50, 3091–3110, https://doi.org/10.
1175/15200469(1993)050,3091:KAMOTT.2.0.CO;2.

Britt, K. C., P. S. Skinner, P. L. Heinselman, and K. H. Knopfme-
ier, 2020: Effects of horizontal grid spacing and inflow envi-
ronment on forecasts of cyclic mesocyclogenesis in NSSL’s
Warn-on-Forecast System (WoFS). Wea. Forecasting, 35,
2423–2444, https://doi.org/10.1175/WAF-D-20-0094.1.

Brooks, H. E., 2004: Tornado-warning performance in the past
and future: A perspective from signal detection theory. Bull.

TABLE A3. Sensitivity experiments.

Expt name Description

Control Thresholds from T1c (see Table A1)
Control_Smooth As in Control, but with Gaussian smoothing with a radius of 4 grid cells
Smooth_area6 As in Control_Smooth, but with the min area threshold lowered from 25 to 6 grid cells

B R I T T E T A L . 173JANUARY 2024

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/24 04:07 PM UTC

https://doi.org/10.1175/JTECH2049.1
https://doi.org/10.1175/JTECH2049.1
https://doi.org/10.1175/2009BAMS2618.1
https://doi.org/10.1175/WAF-D-19-0014.1
https://doi.org/10.1175/WAF-D-19-0014.1
https://doi.org/10.1175/2008MWR2650.1
https://doi.org/10.1175/1520-0493(2004)132<2224:VSAEWB>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<2224:VSAEWB>2.0.CO;2
https://doi.org/10.1145/116873.116880
https://doi.org/10.1175/15200469(1993)050<3091:KAMOTT>2.0.CO;2
https://doi.org/10.1175/15200469(1993)050<3091:KAMOTT>2.0.CO;2
https://doi.org/10.1175/WAF-D-20-0094.1


Amer. Meteor. Soc., 85, 837–844, https://doi.org/10.1175/
BAMS-85-6-837.

Brotzge, J. A., S. E. Nelson, R. L. Thompson, and B. T. Smith,
2013: Tornado probability of detection and lead time as a
function of convective mode and environmental parameters.
Wea. Forecasting, 28, 1261–1276, https://doi.org/10.1175/
WAF-D-12-00119.1.
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